

� *XLGHOLQHV�RQ�$FWLYH�&RQWHQW��

� DQG�0RELOH�&RGH�

Recommendations of the National Institute
of Standards and Technology

NIST Special Publication 800 - 28
Wayne A. Jansen

Report Documentation Page

Report Date
21MAR2001

Report Type
N/A

Dates Covered (from... to)
-

Title and Subtitle
Guidelines on Active Content and Mobile Code:
Recommendations of the National Institute of Standards
and Technology

Contract Number

Grant Number

Program Element Number

Author(s)
Jansen, Wayne A.

Project Number

Task Number

Work Unit Number

Performing Organization Name(s) and Address(es)
Booz Allen & Hamilton 8283 Greensboro Drive
McLean, VA 22102

Performing Organization Report Number

Sponsoring/Monitoring Agency Name(s) and
Address(es)
United States Department of Commerce National
Institute of Standards and Technology

Sponsor/Monitor’s Acronym(s)

Sponsor/Monitor’s Report Number(s)

Distribution/Availability Statement
Approved for public release, distribution unlimited

Supplementary Notes

Abstract

Subject Terms
IATAC COLLECTION

Report Classification
unclassified

Classification of this page
unclassified

Classification of Abstract
unclassified

Limitation of Abstract
UU

Number of Pages
46

REPORT DOCUMENTATION PAGE
Form Approved

OMB No. 074-0188
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data
needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to
Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork
Reduction Project (0704-0188), Washington, DC 20503

1. AGENCY USE ONLY (Leave
blank)

2. REPORT DATE
3/21/2001

3. REPORT TYPE AND DATES COVERED
Report 3/21/2001

4. TITLE AND SUBTITLE
Guidelines on Active Content and Mobile Code:
Recommendations of the National Institute of Standards and
Technology

5. FUNDING NUMBERS

6. AUTHOR(S)
Wayne A. Jansen

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
 REPORT NUMBER

Booz Allen & Hamilton
8283 Greensboro Drive
McLean, VA 22102

9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
 AGENCY REPORT NUMBER

United States Department of
Commerce National Institute
of Standards and Technology

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION / AVAILABILITY STATEMENT
Approved for public release; distribution is unlimited

12b. DISTRIBUTION CODE

A

13. ABSTRACT (Maximum 200 Words)

The private and public sectors depend heavily upon (IT) systems to perform essential,
mission-critical functions. As existing technology evolves and new technologies are
introduced to provide improved capabilities and advanced features in systems, new
technology-related vulnerabilities often arise. Organizations implementing and using
advanced technologies, therefore, must be increasingly on guard. One such category of
technologies is active content. Broadly speaking, active content refers to electronic
documents that, unlike past character documents based on the American Standard Code for
Information Interchange (ASCII) and related character sets, can carry out or trigger
actions automatically without an individual directly or knowingly invoking the actions.

14. SUBJECT TERMS
IATAC Collection, information security, web server, common gateway
interface, activer server pages, data integrity, user identification
and authentication, ActiveX

15. NUMBER OF PAGES
45

16. PRICE CODE

17. SECURITY CLASSIFICATION
 OF REPORT

UNCLASSIFIED

18. SECURITY CLASSIFICATION
 OF THIS PAGE

UNCLASSIFIED

19. SECURITY CLASSIFICATION
 OF ABSTRACT

UNCLASSIFIED

20. LIMITATION OF ABSTRACT

UNLIMITED

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. Z39-18
298-102

 ,

7DEOH�RI�&RQWHQWV�

Foreword... iii

Executive Summary... iii

Introduction... 1

Background .. 1

Browser Anatomy.. 3

Server Anatomy .. 8

Threats.. 11

Underlying Issues.. 14

Categories of Threats ... 15

Technology Related Risks .. 17

PostScript .. 18

Portable Document Format .. 19

Java.. 19

JavaScript and VBScript ... 20

ActiveX... 21

Desktop Application Macros... 22

Plug-ins.. 23

CGI and Related Interfaces.. 23

Countermeasures .. 24

Security Policy... 24

Risk Analysis and Management... 25

Security Audit .. 26

Evaluated Information Technology .. 26

Digital Signature .. 27

Application Settings... 28

 ,,

Automated Filters .. 28

Version Control.. 29

Readers ... 29

Isolation.. 29

Least Privilege... 30

Minimal Functionality... 30

Computer Incident Response Handling... 30

Summary .. 31

Terminology.. 32

Online Resources .. 34

References ... 36

Annex A – HTTP Request Methods ... 39

Annex B – HTTP Response Status.. 39

 ,,,

)RUHZRUG�

This document provides guidelines for Federal organizations’ acquisition and use of security-
related Information Technology (IT) products. These guidelines provide advice to agencies for
sensitive (i.e., non-national security) unclassified systems. NIST’s advice is given in the context of
larger recommendations regarding computer systems security.

NIST developed this document in furtherance of its statutory responsibilities under the Computer
Security Act of 1987 and the Information Technology Management Reform Active of 1996
(specifically section 15 of the United States Code (U.S.C). 278 g-3(a)(5)). This is not a guideline
within the meaning of 15 U.S.C. 278 g-3 (a)(3)).

These guidelines are for use by Federal organizations that process sensitive information.1 They
are consistent with the requirements of OMB Circular A-130, Appendix III.

The guidelines herein are not mandatory and binding standards. This document may be used
voluntarily by non-governmental organizations. It is not subject to copyright.

Nothing in this document should be taken to contradict standards and guidelines made mandatory
and binding upon Federal agencies by the Secretary of Commerce under his statutory authority.
Nor should these guidelines be interpreted as altering or superseding the existing authorities of the
Secretary of Commerce, the Director of the Office of Management and Budget, or any other
Federal official.

([HFXWLYH�6XPPDU\�

The private and public sectors depend heavily upon (IT) systems to perform essential, mission-
critical functions. As existing technology evolves and new technologies are introduced to provide
improved capabilities and advanced features in systems, new technology-related vulnerabilities
often arise. Organizations implementing and using advanced technologies, therefore, must be
increasingly on guard. One such category of technologies is active content. Broadly speaking,
active content refers to electronic documents that, unlike past character documents based on the
American Standard Code for Information Interchange (ASCII) and related character sets, can carry
out or trigger actions automatically without an individual directly or knowingly invoking the
actions. Therefore, exploits based on vulnerabilities in active content technologies by their very
nature can be particullarly insidious. The following key guidelines are recommended to Federal
departments and agencies for dealing with active content.

Federal departments and agencies should understand the concept of active
content and how it affects the security of their systems.

The use of products, with capabilities for producing and handling active content, contributes to the
functionality of a system as a whole and, thus, is an important factor in IT procurement and

1 The Computer Security Act provide a much broad definition of the term “sensitive information,” namely “any
information, the loss, misuse, or unauthorized access to or modification of which could adversely affect the national
interest or the conduct of federal programs, or the privacy to which individuals are entitled under section 552a of title 5,
United States Code (the Privacy Act), but which has not been specifically authorized under criteria established by an
Executive Order or an Act of Congress to be kept secret in the interest of national defense or foreign policy.”

 ,9

implementation decisions. Active content technologies allow code, in the form of a script, macro,
or other kind of portable instruction representation, to execute when the document is rendered.
Like any technology, active content can provide a useful capability for delivering essential
government services, but it can also become a source of vulnerability for exploitation by an
attacker.

Examples of active content include PostScript documents, Web pages containing Java applets and
JavaScript instructions, proprietary desktop-application formatted files containing macros,
spreadsheet formulas, or other interpretable content, and interpreted electronic mail formats having
embedded code or bearing executable attachments. Electronic mail and Web pages accessed
through the Internet provide efficient means for conveying active content, but they are not the only
ones. Active content technologies span a broad range of products and services, and involve various
computational environments including those of the desktop, workstation, and server. Therefore,
the knowledge required to understand their security ramifications is extensive. Many on-line
information resources exist from which needed technical information can be drawn. Pointers to
some of these resources can be found in a separate section at the end of the document.

Federal departments and agencies should develop policy regarding active content.

Information security in any organization is largely dependent on the quality of the security policy
and the processes that an organization imposes on itself. As appropriate to their situation, agencies
should develop policy for the procurement and use of products involving active content
technologies. A good criterion for decision-making is to apply active content where it specifically
benefits the quality of the services delivered to the citizen and not simply for show or because of its
availability within products. Both the consumption and production of active content should be
addressed by the policy. A badly implemented, poorly planned, or nonexistent security policy on
this subject can have a serious negative security impact, since over time these deficiencies have the
potential to create a situation ripe for exploitation. The policy should be stated clearly and
consistently, and made known and enforced throughout the organization. Putting an organizational
security policy on active content in place is an important first step in applying effective
countermeasures and mitigating the risks involved.

Federal agencies should specifically be aware of the benefits they gain using
active content and balance that against associated risks.

One of the most significant security practices often missing in an organization is the on-going
process of risk analysis and management. Security involves continually analyzing and managing
risks. A risk analysis identifies vulnerabilities and threats, anticipates potential attacks, assesses
their likelihood of success, and estimates the potential damage from successful attacks. Risk
management is the process of assessing risk, taking steps to reduce risk to an acceptable level, and
maintaining that level of risk. Experience has shown that use of active content technologies
involves risk, since they are frequently accompanied by new vulnerabilities.

Security is relative to each organization and must take into account an organization’s specific
needs, budget, and culture. As new products are selected and procured, agencies need to consider
the risk environment, cost-effectiveness, assurance level, and security functional specifications, in
making their decisions. Agencies should also be aware of the interconnectivity and associated
interdependence of organizations and that a risk accepted by one organization may inadvertently
expose other organizations they service to the same risk. Moreover, since active content is heavily
oriented toward rendering information for an individual, their decisions may affect the citizens
being served. Once an assessment is made, countermeasures can be put in place against attacks

 9

deemed significantly high, by either reducing the likelihood of occurrence or minimizing the
consequences of the attack.

Federal departments and agencies need to maintain consistent system-wide
security when configuring and integrating products involving active content into
their system environments.

Federal departments and agencies should be knowledgeable of the features in the products they
procure, which can be used to control active content. Products and software applications that
handle documents containing active content typically have built-in controls that can be used to
control or prevent activation of related features. For example, The National Security
Telecommunications and Information Systems Security Committee (NSTISSC) has recently issued
an advisory memorandum on Web browser security2 [NAM00] that outlines steps to lower
associated risks through tightly controlling browser configurations. Electronic mail, spreadsheet,
word processor, database, presentation graphics, and other desktop software applications have
similar configuration settings that can be used to control the security capabilities of active content
within related documents. Such configuration settings demand scrutiny in light of past exploits.
Even today, many manufacturers deliver products with insecure default settings.

Network devices or other special purpose software may be used to supplement application-oriented
controls. Many firewall devices can filter electronic mail attachments for well-known file types,
such as executable files, and delete them at the point of entry. Advanced firewall devices can carry
out sophisticated filtering for viruses lurking within executables and hidden macros within
document files. Anti-virus software has also become increasingly capable of detecting electronic
documents having active content with a malicious code signature. It behooves organizations to
become familiar with the security options available and use them according to organizational
policy.

2 http://csrc.nist.gov/publications/secpubs/index.html#other

 �

,QWURGXFWLRQ�

The private and public sectors depend heavily upon Information Technology (IT) systems
to perform essential, mission-critical functions. As existing technology evolves and new
technologies are introduced to provide new capabilities and features, new vulnerabilities
are often introduced as well. Organizations implementing and using advanced
technologies, therefore, must be increasingly on guard.

One such category of emerging technologies is active content. Although the term has
different connotations among individuals, it is used here in its broadest sense to refer to
electronic documents that, unlike ASCII character documents of the past, can carry out or
trigger actions automatically without the intervention of a user. Examples of active
content include PostScript3 documents, Java applets, JavaScript, word processing macros,
spreadsheet formulas, and executable electronic mail attachments. Taken to its extreme,
active content becomes, in effect, a delivery mechanism for mobile code. The purpose of
this report is to provide an overview of this topic and its underlying technologies so that
the reader understands the associated security risks and can make an informed IT security
decision on its application.

The report begins by providing background information on markup languages and other
World Wide Web technologies involving active content. A knowledgeable reader may
wish to skip this section. The discussion proceeds onto generic threats, followed by a
perspective on risks drawn from past exploits involving technology-related vulnerabilities.
Real-world examples appear throughout the report to increase understanding and
awareness of the risks involved with various forms of active content. The report
concludes by identifying available countermeasures and summarizing some detailed
recommendations. Key high-level recommendations appear at the front of the report in
the executive summary. A glossary of relevant terms and links to useful on-line references
appear at the end of this document.

%DFNJURXQG�

Having the ability to download files and electronic documents off the Internet is a useful
function and a common practice for many people today. Web pages serve as an electronic
counterpart to paper documents such as forms, brochures, magazines, and newspapers.
Although paper documents come in different shapes and sizes, they are composed entirely
of text and graphics. Similarly, most Web pages consist mainly of text and graphics.
However, unlike paper documents Web pages can involve active content, capable of
delivering electronic documents that contain digitally encoded multimedia information
enlivened through embedded computer instructions.

Active content involves a host of new technology such as built-in macro processing,
scripting languages, and virtual machines, which blur the distinctions between program
and data. Electronic documents have evolved to the point that they are themselves

3 This document discusses certain computer manufacturers’ products and standards. The discussion is not
intended, however, to imply recommendation or endorsement, by the National Institute of Standards and
Technology, nor is it intended to imply that the products and standards identified are necessarily the best
available.

 �

programs, or contain programs that can be self-triggered. Loading a document into a word
processor can produce the same effect as executing a program, requiring appropriate
caution to be taken. The popularity of the World Wide Web (WWW) has spurred the
trend towards active content. A dynamic weather map, a stock ticker, and live camera
views or programmed broadcasts appearing on a Web page are common examples of use
of this technology. Like any technology, active content can provide a useful capability,
but can also become a source of vulnerability for an attacker to exploit.

Despite these capabilities, people tend to use electronic documents in much the same way
that they use paper documents – accessing and viewing content, following references to
other documents, and collecting information filled into forms. That is, Web pages
delivered from Web servers to individuals via Web browsers impart an inherent document
metaphor [Ven99]. The value of the document metaphor is that people are familiar with
handling paper documents and can quickly adapt to using electronic facsimiles appearing
within Web pages, since they understand the basic operations.

One drawback, however, is that the document metaphor is generally considered non-
threatening and can lull one into a false sense of security. Moreover, strictly observing the
document metaphor somewhat limits the way in which Web-based applications function.
In particular, non-textual content does not lend itself to paper document style handling.
For example, streaming or continuous delivery media, such as a live radio transmission or
voice communication can transpire only as they occur in real time. In situations where the
document metaphor has become awkward, other more natural alternatives have arisen,
evolving the document metaphor toward serving as a general-purpose vehicle to provision
electronic services.

Code versus Data: Not so long ago, the security risks associated with the use of
computers were relatively straightforward. Instructions were distinct from the data
on which they operated and some hardware could even distinguish internally
between instructions and data (e.g., using a special memory bit), to avoid
confounding them. Over the years the situation changed: tools emerged to facilitate
application development in higher-level languages in lieu of machine languages,
generic applications appeared, and hardware processing speeds increased
dramatically. Eventually, It became advantageous to trade off the execution speed
of compiled code against the flexibility of interpreted code.

An interpreter is essentially a translator that accepts source code and executes it
directly, without first producing object code (i.e., native machine instructions) as with
a compiler. Reserved characters and/or words (e.g., “<” and “if” in JavaScript) are
used by an interpreter to distinguish instructions within a text stream. An interpreter
fetches each instruction sequentially, according to the flow of control, and carries out
the intended behavior. Because of this, interpreters are inherently slower than
compilers, which directly generate machine instructions for execution. Interpretative
languages range from lists of simple macro-type commands to complex
programming structures. Special purpose interpreters, called emulators, have been
used successfully to simulate the behavior of hardware no longer in existence or to
provide a virtual machine environment for conceptual devices. The latter has been
used effectively to support platform heterogeneity through interpretative compilers,
which translate source code into virtual machine code that can execute on various
independently implemented virtual machines.

 �

With the arrival of the Web came the desire to make static pages more dynamic and
lively by using interpreters throughout the system architecture. Today, most data
files contain instructions that aid in the presentation or use of the data. Interpreters
are ubiquitous: spreadsheet formulas, database query languages, word processing
macros, and script interpreters not only embedded in Web browsers and servers,
but also as stand alone development tools to forge applications from existing
program components. While these technology improvements facilitate computer
use, they also can involve serious risks, which are often not readily apparent to
many users. Many of these risks are associated with vulnerabilities created through
the disguised (e.g., using special characters) or unexpected input of commands to
an interpreter. For example, a program supplying an input it receives as a
parameter to an interpreter may be fed a string that uses a special character to
curtail the initial part of the string as a parameter and begin a new command
sequence with the remainder. Some applications use multiple interpreters
successively, passing the output of one directly into another, which further
compounds the problem, since a harmful input may be generated unobtrusively
along the way.

%URZVHU$QDWRP\

A browser is the generic term used to refer to software that lets individuals view pages
from various sources, including Web servers on the Internet, which make up the WWW.
Netscape Navigator and Microsoft Internet Explorer are two popular Web browsers that
aid in navigating text, graphics, hyperlinks, audio, video, and other multimedia
information and services on the Web. Although Web browsers support a number of
legacy protocols, such as the File Transfer Protocol [FTP], they rely mainly on a simple,
request-response communications protocol, the HyperText Transfer Protocol (HTTP)
[HTTP], to access Web servers. The browser requests information from a specific Web
site, by sending a method request to the Web server conveying the Universal Resource
Locator (URL) of the desired resource (e.g., a Web page), client information, and content
handling capabilities. The URL is used to locate the server and serves as a unique address
of the resource. Annex A contains a brief explanation of the available request methods a
browser can issue. Typical usage involves mainly the issuing of GET and POST methods
to retrieve information or provide form content, respectively.

Once the request is issued, the browser expects a response from the server, containing a
status code, meta-information about the resource, the content corresponding to the
resource requested (e.g., the Web page specified by the URL), and an indication of content
encoding. Five general classes of response exist, as indicated by the first digit of the status
code. For example, most of us have received a 400 series code, the 404 code, at one time
or another when unsuccessfully attempting to reach a site. Annex B contains a brief
description of the classes of status code returned by a server.

In order to choose the best available representation of a resource at a browser, HTTP
version 1.1 provides two forms of content negotiation:

� Server-driven, where the browser sends hints about its preferences to the server, using
headers such as Accept-Language, Accept-Charset, etc., allowing the server to choose
the representation that best matches the expressed preferences.

 �

� Browser-driven, where in response to a browser request, the server replies with a list
of the available representations and a description of their properties (e.g., language
and character set), allowing the browser to choose one representation and reissue the
request for the chosen variant.

The first alternative is the more mature. In fact, since the HTTP 1.1 specification does not
completely define the headers needed for browser-driven negotiation, server-driven
negotiation remains the only usable form at this time.

The representation of a resource such as a Web page involves control codes, normally
referred to as tags, and data. Browsers interpret control codes within Web pages, which
indicate the structure of the data (e.g., beginning of item, end of item) and the way to
render it (e.g., heading, subheading, paragraph, list, embedded image). The codes may
also embed URLs of additional information such as images, which entail further requests
to the server to retrieve the information and complete the Web page. The control codes
are the subject of intense standardization and include specifications for the HyperText
Markup Language (HTML) [HTML4], Cascaded Style Sheets (CSS) [CSS1, CSS2], and
the eXtended Markup Language (XML) [XML1]. Browsers are designed to read such
codes, interpret their meaning, and render the Web page accordingly.

The original HTML specification, which signaled the birth of the WWW, also implicitly
stipulates the basic requirements of a browser. Like most standards, commercial
implementations have tended to extend the basic requirements into proprietary areas, and
occasionally ignore a basic requirement or interpret it differently than originally intended.
This has led to standardization bodies such as the WWW Consortium (W3C) to evolve
standards along the lines of existing implementations, and developers of Web pages to
undertake measures to ensure compatibility with versions of commonly used browsers.

Browsers inherently involve many different program components, both internal and
external. Figure 1 illustrates the common components found in most browsers. The
component layering illustrated is only for discussion purposes and not meant to imply any
structural relationship. A basic protocol machine for HTTP, a parser for HTML, and a
mechanism to render simple textual and graphical content are essential core components
present in all browsers. The remaining components represent mechanisms to render other
forms of content. To some extent, the specific choices depend on the browser
manufacturer. However, competition and market demand influence manufacturers to offer
components having comparable functionality with a high degree of compatibility and
uniformity. Scripting languages (e.g., JavaScript, Visual Basic (VB) Script, and JScript)
are a useful means of having instructions, conveyed within the HTML from the server,
executed by the browser, and require an interpreter for each language supported.
Similarly, environmental components for Java, ActiveX, and Plug-in technology allow
code external to the browser to be executed at the browser.

 �

Plug-ins

HTTP

Rendition

Scripting (e.g., JavaScript, VBScript)

ActiveXJava

HTML Parsing (or other ML, e.g., XML)

• Figure 1: Basic Components of a Generic Browser

To simplify the browser development, product designers allow extensibility through a
variety of techniques for communicating with other functional components. The
motivation is twofold: no one can reasonably build-in the means to render all forms of
content themselves, and to attempt to do so would limit innovation as well as the
usefulness of the browser. As long as the browser developer employs or provides a well-
defined interface, other software manufacturers can readily extend functionality with their
components. In general, the program components of a browser, both built-in and
otherwise, can be divided into the following classes [Mor98].

3URJUDP &RPSRQHQWV ,QFRUSRUDWHG 'LUHFWO\ ZLWKLQ WKH %URZVHU

Browsers contain a significant amount of built-in functionality and typically can render a
variety of content types, including text, HTML delimited text, scripting languages, Java
applets and common types of image files, inherently. The associated program components
are functionally internal to the browser and able to interpret such content directly. In order
to keep the browser safe from sources that have varying levels of trust, the program
components must take precautions against arbitrary input received. Because these
programs are contained within the browser, the browser manufacturer is able to impose
security constraints on them. Built-in functionality is also a means for the manufacturer to
distinguish its product from others in various ways such as offering proprietary extensions
to standard script languages, close integration and interworking with other product
offerings, and entirely new content handling capabilities.

In general, script-based languages do not incorporate an explicit security model in their
design, and rely mainly on decisions taken during implementation. One noteworthy
positive example is the implementation of secure JavaScript in Mozilla [Anu98]. The
implementation controls access to resources and external interfaces, prevents residual
information from being retained and accessible among different contexts operating
simultaneously or sequentially, and allows policy, which partitions the name space for
access control purposes, to be specified independently of mechanism. Java applets are
also an interesting case, because the Java Virtual Machine (JVM), the internal browser
component that provides the execution environment for Java applets, involves an elaborate
level of security beyond that of the browser. The default security-policy settings for a

 �

JVM environment are normally determined by the browser manufacturer, but can be
tailored by each user.

3URJUDP &RPSRQHQWV ,QVWDOOHG WR ([WHQG WKH %URZVHU YLD D 'HILQHG

,QWHUIDFH

A significant innovation in the design of Web browsers is the ability to extend them
beyond their built-in functionality. For a browser to hand off content rendering to such
program components, the component must register its handling capabilities (i.e., the file
extensions and MIME types it supports – see sidebar below) with the browser when it
installs. Often, these extensions require full access to the browser internals and the
underlying operating system in order to accomplish their goals. Therefore, programs that
extend browsers typically enjoy full function interfaces to the internals of the browsers and
to the operating system. The two most common means of extending browsers, Netscape
plug-ins and ActiveX controls, have somewhat different security models. Microsoft
ActiveX controls can require authenticated digital signatures as a prerequisite for
installation, while Netscape plug-ins have no mechanism for enforcing authenticated
signatures. However, once an ActiveX control is installed, it has free range over the entire
machine, whereas the plug-in is confined to the capabilities of the browser.

MIME Types: Both browsers and Web servers are aware of Multipurpose Internet
Mail Extensions (MIME) content types [MIME] and use them during content
negotiation. MIME was designed originally as an extensible mechanism for
electronic mail, using the convention of content-type/subtype pairs to specify the
native representation or encoding of associated data fully. Content types include
the following:

• Audio - for transmitting audio or voice data.

• Application -used to transmit application data or binary data, and hence, among
other uses, to implement an electronic mail file transfer service.

• Image - for transmitting still image (picture) data.

• Message - for encapsulating another mail message.

• Multipart - used to combine several body parts, possibly of differing types of
data, into a single message.

• Text - used to represent textual information in a number of character sets and
formatted text description languages in a standardized manner.

• Video - for transmitting video or moving image data, possibly with audio as part
of the composite video data format.

When a browser requests a Web page, it attaches information about what kind of
content it can handle (e.g., "image/gif, image/x-xbitmap, image/jpeg, image/pjpeg,
image/png") using MIME conventions. This allows the server to provide content
selectively, based on the capability of the browser (e.g., serve graphics in GIF or
JPEG instead of TIFF format).

 �

In response to a browser’s request, Web servers always indicate the type of content
being sent via preliminary header information that conveys the MIME content
type/subtype. Web servers use a mapping to associate the filename extensions of
requested resources with MIME content types/subtypes. In a typical MIME map,
each entry contains a filename extension to be associated with one or more MIME
data types/subtypes. For example, an entry for image/gif uses the filename
extension “.gif” and the entries for application/postscript use the filename extensions
“.ps “and “.eps”.

Based on the MIME types provided by the server, the browser must then ascertain
what to do. It can render the associated content, either directly through a built-in or
incorporated program component, or indirectly through the execution of a helper
application. If the browser cannot locate a registered program entry for a MIME
time, it can attempt to associate a program component using the filename extension
of the resource and process accordingly. If that fails, as a final option, the browser
can save the information to disk for later use. Note that for security reasons,
browsers typically do not automatically launch executable programs downloaded
from the Web, which have a MIME content type of "file/executable" indicated by the
server. The default action is to ask whether the program should be launched or
saved to disk, although the configuration can be set so that the browser starts such
programs automatically without any prompts.

3URJUDPV /DXQFKHG DV DQ ,QGHSHQGHQWO\ ([HFXWLQJ 3URFHVV E\ WKH

%URZVHU

As an alternative to using a programming interface, a browser’s capabilities can be
extended using a so-called helper application or content viewer. Like a plug-in, the
browser starts a helper application and hands off content rendering when it encounters a
content type (MIME type or file extension) for which the helper application is registered to
handle. Unlike a plug-in, a helper application runs separately from the browser in its own
process space, and does not interact with or rely on the browser once initiated. Because a
helper application runs independently, executed with the content file as input, it is
complete outside of the control of the browser, including the browser’s security controls.

3URJUDP &RPSRQHQWV 'LUHFWO\ (QFDSVXODWLQJ WKH %URZVHU

An interesting and somewhat unconventional approach is to embody the browser itself
within another application as a means of extending functionality. The best example is that
Internet Explorer, or any other browser that complies with ActiveX container or OLE
container technology, can be run as an ActiveX control inside an application. Visual
Basic applications inherently have this capability, which allows one to not only control the
URL requested, but also interact with some of the content on the screen, or even allow
HTML pages to pass information to and from the container application [Hug99].
Microsoft MSN, America Online, and a number of free Internet service access providers
configure their browsers this way. A number of browsers, developed using different
technology schemes, are available today specifically for being embedded within an
application, as a means of adding new functionality. An electronic mail application, for
example, could use such a component to enhance its capabilities and render HTML
formatted messages directly, including any embedded scripts.

 �

6HUYHU$QDWRP\

A Web server is a program that resides on a computer on the Internet and supplies
information and services formatted in HTML or another markup language, which contains
text, image, audio, and video content. The primary function of a Web server is to respond
to requests sent to it from a Web browser via HTTP.

The transaction begins when a browser requests a resource from the Web server. In the
simplest case, the Web server retrieves the requested content from a file system and
transmits it to the browser. While this approach works well for static non-volatile
information, it can be unsuitable in situations where the information is volatile, already
resides in a database or other repository under a different format, or varies according to the
input provided. In such cases, the Web server responds to the request by creating the
content dynamically, typically by spawning a process or lightweight thread to generate the
information. The Common Gateway Interface (CGI) is an industry standard for
communicating between a Web server and another program, often employed in such
instances.

As with browsers, Web servers involve many different kinds of program components and
are designed to be extensible and to interact with databases, legacy systems, and other
servers running on an organization's network. Figure 2 illustrates the common
components found in most servers in the same manner as was done earlier for browsers.
The key components present in all Web servers are a basic protocol machine for HTTP, a
means to fetch Web pages or resource templates, and a mechanism to compose and
validate the contents of the response. The remaining components represent mechanisms to
extend functionality, mainly for the purpose of generating information dynamically.
Besides the widely supported CGI standard, the specific choices depend on the Web
server manufacturer.

Java ServletsCGI Code

HTTP

Composition

Server Side Scripting (e.g., ActiveX Objects)

Web Page/Template Retrieval

• Figure 2: Basic Components of a Generic Web Server

A CGI application executes as a separate process, which can be written in a variety of
programming languages. As an independent process, the application is capable of
accessing other hosts (e.g., a database server) and resources in performing its function,
subject to its system security permissions. Once the application creates the information,
the Web server conveys it in a response back to the browser. One drawback with this

 �

approach is that it consumes a significant amount of computational resources to spawn a
new process for each request. The kernel receives an interrupt each time the application is
called; then the application must be allocated memory, loaded into memory, passed the
input parameters from the browser, and executed. If the application is called multiple
times simultaneously from different sources, multiple copies of the application are resident
in memory at the same time.

Because of the overhead involved with CGI, developers have sought after more efficient
means to communicate between the software on the Web server and another program or
library. A number of other programming interfaces offering performance improvements
have arisen, such as the Netscape Server Application Programming Interface (NSAPI) and
the Microsoft Internet Server Application Programming Interface (ISAPI). An application
built using one of these interfaces, however, operates quite a bit differently from a CGI
application. For example, rather than executing as an external application in a separate
process, an ISAPI application executes as an integral part of the Web server within the
same address space as the server code. This is possible because the ISAPI application is a
dynamic link library component rather than an external program. Moreover, because a
dynamic link library can be loaded or unloaded at will, the ISAPI application can remain
in memory, or be unloaded from memory to conserve system resources when it finishes
and reloaded again if needed. An ISAPI application is also a shared multithreaded code
image, requiring only a single copy to support multiple simultaneous browser requests.
These characteristics conserve system resources and improve response.

In general, the techniques for dynamically generating content and improving Web server
capabilities tend to be proprietary and used by software manufacturers to differentiate their
product from others in the marketplace. Often the approach is to apply or extend a
technology developed for the browser environment, such as a particular scripting language
or a framework for distributed program components, in some unique way for the server
environment. The following items provide examples of a few of the more notable
technologies.

6HUYHU 6LGH ,QFOXGHV �66,�

SSI is a limited server-side scripting language supported by most Web servers. SSI
provides a set of dynamic features, such as including the current time or the last
modification date of the HTML file, as an alternative to using a CGI program to perform
the function. When the browser requests a document with a special file type, such as
“.shtml”, it triggers the server to treat the document as a template, reading and parsing the
entire document before sending the results back to the client. SSI commands are
embedded within HTML comments (e.g., <!--#include file="standard.html" -->). As the
server reads the template file, it searches for HTML comments containing embedded SSI
commands. When it finds one, the server replaces that part of the original HTML text
with the output of the command. For example, the SSI command given above (i.e.,
#include file) replaces the entire SSI comment with the contents of another HTML file.
This allows the display of a corporate logo or other static information prepared in another
file to occur in a uniform way across all corporate Web pages. A subset of the directives
available allows the server to execute arbitrary system commands and CGI scripts, which
may produce unwanted side effects.

 ��

0LFURVRIW $FWLYH 6HUYHU 3DJHV �$63�

ASP is a server-side scripting technology from Microsoft similar to SSI, which can be
used to create dynamic and interactive Web applications. An ASP page is essentially an
HTML template that contains server-side scripts that run when a browser requests an
“.asp” file from the Web server. Both Jscript and VBScript are supported scripting
languages, but other languages can be accommodated as well. The Web server processes
the requested page and executes any script commands encountered, before sending the
composed result to the user’s browser. Scripting capabilities can be extended through
ActiveX objects. A script that invokes an ActiveX object causes the object to be created
and supplied any needed input parameters. Note that ActiveX is an optional technology
not required by Active Server Pages.

-DYD 6HUYOHWV

Servlets are based on Java technology and are essentially a kind of server-side applet.
They require the Web server to determine whether the browser's request requires
dynamically generated information from a servlet. If so, the Web server can locate or
instantiate a servlet object corresponding to the request (e.g., by uploading the code from
another server) and invoke it to obtain the needed results. The Web server typically
populates itself with the servlet objects, which remain active until invoked. Thus, there is
no startup overhead associated with execution of the servlet objects. A Web server may
also offload the handling of servlets to another server. By relying on Java portability and
observing a common applications program interface, servlet objects can run in nearly any
server environment. Servlets support an object-oriented environment on the Web server,
which is flexible and extendible. Moreover, untrusted servlet objects can be executed in a
secure area, with the dynamically generated information being passed from the secure area
into the remaining server environment.

Web Scripting – Client vs. Server: It is important to distinguish scripts run by the
browser (i.e., client-side scripting) from those run by the Web server (i.e., server-
side scripting). Client-side scripting and server-side scripting are distinct concepts
that serve different purposes. For example, since a server does not interact directly
with a user, server-side scripting requires no human-to-computer interface
capability. Furthermore, the Web browser and server each supply their own unique
environment for executing scripts.

Client-side scripting is used to make Web pages more interactive and functional
after they have been sent to the browser. For example, client-side scripts might
involve validating data entry fields on an HTML form so the user gets immediate
feedback when a mistake occurs, or to integrate an ActiveX control or Java applet
with another component on the page so that they interact.

A Web browser environment for client-side scripting includes the objects that
represent the user interface (e.g., windows, menus, dialog boxes, text areas,
anchors, frames, cookies, and input/output) and a means to associate scripting
code with events at that interface (e.g., change of focus, selection, loading and
unloading of text and images, form submission, error and abort, and mouse
actions). Scripting code appears within the HTML and the displayed page is a
combination of fixed and computed text, images, and user interface elements.
Since the scripts react to user interaction, there is no need for a main program.

 ��

A Web server provides a different environment for scripting, which includes objects
representing requests, clients, and files, and mechanisms to lock and share data.
All server-side scripting takes place before the resource (e.g., a Web page) is sent
to the browser. The server-side scripts, for example, may involve creating a Web
page dynamically by querying a database and formatting the results into HTML for
delivery to the browser.

By using client-side and server-side scripting together, it is possible to distribute
computation between the browser and Web server while providing a customized
user interface for a Web-based application.

Client-side scripting depends on the browser that processes a script, which requires
awareness of the capabilities of browsers that might be encountered. While server-
side scripting, such as with ASP pages, can create pure HTML pages acceptable by
any browser, they are not necessarily portable to or compatible with the Web server
software running elsewhere in an organization.

7KUHDWV�

The openness of the Internet makes it easily accessible to intruders. Over recent years,
intruder activity has revealed a number of shortcomings in the original design of the
Internet. While some security features were foreseen and built into the relevant protocols,
including the keystone Internet Protocol (IP), others were not addressed. They include the
following omissions:

� Data confidentiality: Data passed across the Internet travel in packets that can easily
be captured and viewed to reveal their contents.

� Data integrity: Data traversing the Internet may be intercepted and modified before
reaching the recipient or replayed later.

� User identification and authentication: The responsibility for user authentication falls
to the connected hosts. Unfortunately, many systems still rely on cleartext passwords
and are, therefore, open to having them captured by an eavesdropper.

� System identification and authentication: Internet addresses identify host systems
connected to the Internet, but because they are not authenticated or strongly bound to
a host, the addresses can easily be spoofed.

� Reliable domain name translation: The Domain Name System (DNS) used to
translate names to host addresses on the Internet, relies on truthful and accurate
reporting of mappings by all components, which is difficult to ensure.

Intruders have used these omissions to attack hosts on the Internet. Furthermore, the
Internet amplifies risks associated with vulnerabilities in connected hosts, by exposing
those vulnerabilities to a broader range of threats.

An attack is a realization of some specific threat that presents a danger to the
confidentiality, integrity, availability, or accountability of a computational resource. Many

 ��

initiatives to mitigate these threats are underway or reaching maturity. Standards for
Internet Protocol Security (IPSec), Secure DNS, and Public Key Infrastructure (PKI) have
been completed and realized in products. Commercial, government-certified, security
evaluation laboratories have been established under regional and worldwide mutual
recognition schemes. Competition for an algorithm to replace the aging Data Encryption
Algorithm is complete, with the NIST’s selection of the Rijndael algorithm for the
Advanced Encryption Standard. Organizations have established emergency response
teams, which have improved their effectiveness in combating intrusions. Commercial
software for detecting and eliminating computer viruses, filtering network protocols (i.e.,
firewalls), and detecting intrusions is widely available.

While the outlook should be positive, a number of factors contribute to perpetuating
security problems.

6FDOH

The sheer numbers of computers that make up the Internet preclude wholesale upgrades to
new security protocols and solutions. Therefore, a large pool of systems straggles behind
in various degrees from having the most update protection mechanisms in place. While
one’s enterprise may have up-to-date and secure systems, one or more systems from the
pool of stragglers may be used as a launching pad for new attacks, such as hard-to-prevent,
distributed denial of service attacks.

3DWFKHV

Invariably errors of commission or omission occur that allow protection mechanisms to be
bypassed or disabled, and create a vulnerability. A vulnerability in and of itself may or
may not pose a serious problem, depending on what tools are available to exploit it. As
vulnerabilities are discovered and made known to the manufacturer, a window of exposure
exists until a patch, containing corrective code to close the vulnerability, can be made
available. Any delay in applying the patch opens the window not only to a wider time
period for exploitation, but also to a greater audience of potential intruders, as attack tools
that exploit the vulnerability emerge.

4XDOLW\

The prevalence of unintentional implementation errors in software products has become
an accepted business practice. Modern market-driven development processes, such as
synchronize and stabilize [Cus99], evolved to meet the demand for constructing large,
complex feature-rich software products in a flexible manner. While such approaches
emphasize efficient adaptability to incorporating new technologies, shifting priorities, and
competition-driven features, these benefits come at the expense of discipline (e.g., formal
design, code review, and complete testing) and schedule. The goal of producing a
shippable product tolerates the presence of errors. While most errors are benign with
respect to security, an unresolved implementation error may create a serious security
vulnerability. The lack of quality control manufacturers have over the implementation
process is also indicated by the significant and growing number of hidden functionality,
so-called Easter Eggs, that exist in well known and widely used commercial products
[Wer99]. Easter Eggs often embody significant code ranging from simple games to three-
dimensional flight simulators. While intended to be non-threatening and surreptitiously

 ��

honor the software development team whose names are eventually revealed, they provide
another possible avenue for attack.

&RQIRXQGLQJ

In striving to offer greater functionality and flexibility, software developers continue to
blur the distinctions between program and data. While the intentions of the developer are
presumably good, they can often have a negative impact when the need for security is not
fully taken into account. Moreover, the prevalence of unintentional implementation errors
in software applications that process electronic documents plagues active content
technology. Even if a design is correct and secure, the implementation may
unintentionally contain a serious vulnerability that can be exploited by malicious code
conveyed in the active content portion of a document. An attacker needs only to learn
what software their target is using, find an appropriate exploit, and send the document to
the target.

&RPSOH[LW\

The trend in application software development is to add more features and greater
complexity to products. Greater complexity requires more code and more interaction
among components, resulting in more implementation errors to occur. This trend
combined with the competitive pressures facing manufacturers to be first to the market,
the technical and cost barriers to extensive testing, and a marketplace that chooses
functionality over security, ensures attackers continual opportunities in the future.

&RQILJXUDWLRQ

For a general population baffled by the programming interface of a videocassette recorder,
understanding a system’s security posture and correctly setting its configuration is an
unrealistic expectation. Yet, we are increasingly relied upon to exercise such skills,
particularly with our own Web browsers. Even knowledgeable, enterprise system
administrators are faced with a similar dilemma – confronted with an array of security
solutions, including those involving company proprietary and incompatible mechanisms,
they must oversee a fragile patchwork of software products and devices that demand
constant oversight.

(WKLFV

Commercial companies are increasingly using their Internet offerings to collect
information on individuals, both directly (e.g., during credit card purchases and free
service subscriptions) or indirectly (e.g., via persistent cookies, Web bugs, and spyware).
These actions compound the aforementioned security problems, since successful attacks
launched against commercial servers can also seriously affect the privacy of individuals
whose information resides there.

6DIHJXDUGV

It is not possible to defend against all attacks completely in an open network such as the
Internet. At the very least, there is the possibility for remotely launched denial of service
attacks, which consume resources and deny access or speedy response to legitimate
requests by flooding the target with bogus requests. Recent distributed denial of service

 ��

attacks, launched simultaneously from multiple proxy sites under the control of an
attacker, demonstrate both the ease in which the capacity of any Web site can be
overwhelmed, and the value of having complete site redundancy for critical services.

8QGHUO\LQJ ,VVXHV

Active content allows code, in the guise of a script, macro, or other kind of portable
instruction representation, to execute when the document is rendered. HTML and other
related markup language documents, whether delivered via the WWW or some other
means, provide the richest mechanisms for conveying active content; they are the perfect
active content containers. However, it is important not to lose sight of the fact that many
other document formats, while not as rich in mechanisms, have similar potential.
Moreover, while any means used to deliver and render active content automatically is a
concern, we focus on delivery via the WWW, because the associated technologies are
designed and implemented to work together seamlessly, with a user often unaware of the
security implications.

Figure 3 illustrates the basic client-server architecture supported by HTTP. One
distinguishing aspect is the inherent ability to convey code from one platform (i.e., a Web
server) to another (i.e., a browser) where it automatically executes. As depicted in the
figure, input from the browser can also influence the execution at the server. In the
previous sections, we have seen that the process of rendering the active content is more
involved than what is illustrated. Nevertheless, conceptually the simplification is accurate,
insofar as the supplier of the code and the operator of the execution environment can be
from different domains, posing a security risk for each side.

Browser
Web

Server
Request

Response

Server Side Code
Running against User
Provided Data

Client Side Code
Running with Server
Provided Code & Data

…

…

• Figure 3: Simplified HTTP Transaction

Web-based applications often involve other computer platforms besides those of the
browser and Web server. As mentioned earlier, the Web server may rely on a database
server or other on-line repository or computational engine to fulfill requests it receives.
HTTP also accommodates the use of a proxy, which normally resides on a firewall device
to screen browser interactions, and automatic redirection by the referenced Web server to
another server, which supposedly has the requested resource. Therefore, although we

 ��

conceptually visualize a transaction as a simple HTTP interchange between a browser and
a Web server, the reality is typically more complex, involving other entities. Figure 4
gives a more complete picture of the entities that could be involved in an HTTP
transaction.

Browser

Proxy

Web
Server

Redirected Web
Server

Database
Server

Request

Response

• Figure 4: Entities Involved in HTTP Transaction Processing

Fred Cohen [Coh95] summarized some of the fundamental security issues of the design of
the WWW, which bear repeating here:

� Distributed untrusted computation: As a basic premise, the Web provides a means for
information provided by arbitrary servers at unknown locations operated by unknown
organizations to be interpreted by any of a large number of different browsers at
unknown locations operated by unknown organizations. The idea of interpreting
unknown information from unknown sources seems inherently risky.

� Remote execution of untrusted software: Many Web extensions are designed to
provide added function making the Web more than just a massive uncontrolled
distributed database. These extensions, such as PostScript, Java, and MIME
essentially allow for remote execution of untrusted software. For the browser, the risk
is that the computer running the browser will be taken over, while for a server, the
same risk extends to the server and any subsequent browsers that get information from
that server once it is attacked.

� Remote interpretation of unstructured and unverified content: In essence, most
browsers and servers assume that the incoming information follows the HTTP
protocol, but there is inadequate enforcement of this by servers and browsers. The
result is that any incoming information might not conform, might be interpreted using
an undefined method (corresponding to a don't care condition in the interpreter), and
might result in arbitrary undesirable side effects.

&DWHJRULHV RI 7KUHDWV

A number of generic security threats apply to systems on the Internet, for example,
unauthorized release of information, modification of information, and denial of service.
The WWW, as a substrate over the basic Internet technology, is subject to these same
threats. In addition, the capabilities for supporting active content and mobile code provide
new threat opportunities that fall within these general categories. Like any technology,
active content can provide a useful capability, but can also become a source of
vulnerability for an attacker to exploit. Overall, three different classes of attacks against
this framework exist.

 ��

%URZVHU 2ULHQWHG

Attacks can be launched against Web browser components and technologies by the Web
server. The mobile code paradigm requires a browser to accept and execute code
developed elsewhere. Incoming code has two main lines of attack. The first is to gain
unauthorized access to information residing at the browser or its underlying platform; the
second is to use its authorized access in an unexpected and disruptive fashion. Because
browsers can support multiple associations with different Web servers as separate
windowed contexts, the mobile code of one context can also target another context.
Unauthorized access may occur simply through a lack of adequate access control
mechanisms or weak identification and authentication controls, which allow untrusted
code to act or masquerade as a trusted component. Once access is gained, information
residing at the platform can be disclosed or altered. Besides sensitive data, this
information could include the instruction codes or configuration of the platform.
Depending on the level of access, complete control of the platform may be subsumed by
the mobile code. Even without gaining unauthorized access to resources, malicious code
can deny platform services to other processes by exhausting computational resources, if
resource constraints are not established or not set tightly. Otherwise, the code can interfere
with the platform by issuing meaningless service requests wherever possible.

6HUYHU 2ULHQWHG

Attacks can be launched against Web server components and technologies by the browser.
A browser can easily isolate and capture a response from a server, and may launch an
attack by manipulating information and feeding back unexpected input to the server in a
subsequent request. The idea is to induce the server into performing unauthorized
commands provided by the browser, which in turn gains access to sensitive information or
control of the server. For example, because HTTP is stateless, having no efficient means
of maintaining persistent information between transactions, Web-based applications often
use tricks, such as hidden fields within a form, to provide continuity between transactions,
which may provide an avenue of attack. Similarly, other user provided input might
eventually be passed to an application interface that interprets the input as part of a
command upon which other commands can piggyback or whose interface buffer can be
overrun in a buffer overflow attack. Such exploits may involve the complete analysis and
reversing engineering of transactions by an attacker. Subtle changes introduced into the
Web server can radically change the server’s behavior (e.g., turning a trusted entity into
malicious one), the accuracy of the computation (e.g., changing computational algorithms
to yield incorrect results), or the confidentiality of the information (e.g., disclosing
collected information).

1HWZRUN 2ULHQWHG

Attacks can be launched against the network infrastructure used to communicate between
the browser and server. Even assuming the browser and Web server are well behaved,
other entities may attempt actions to disrupt, harm, or subvert the framework. An attacker
can gain information by masquerading as a Web server using a man in the middle attack,
whereby requests and responses are conveyed via the imposter as a watchful intermediary.
Such a so-called Web spoofing attack [Fel97] allows the impostor to shadow not only a
single targeted server, but also every subsequent server accessed. Other obvious attack
methods lie outside the browser-server framework and involve targeting either the
communications or the supporting platforms. For example, at a level of protocol below

 ��

HTTP, an entity may eavesdrop on messages in transit between a browser and server to
glean information. An attacking entity may also intercept messages in transit and modify
their contents, substitute other contents, or simply replay the transmission dialogue later in
an attempt to disrupt the synchronization or integrity of the information. Denial of service
attacks through available network interfaces are another possibility, as are exploits
involving any existing platform vulnerability.

7HFKQRORJ\�5HODWHG�5LVNV�

In order to protect computational resources from attack, appropriate countermeasures,
such as hardware and software mechanisms, policies, procedures, and physical controls,
must be in place. The absence of or weakness in a countermeasure is a security
vulnerability. Most computer technologies involve some degree of vulnerability due to
flaws in the design or implementation of the hardware and software. While these
vulnerabilities are often subtle and do not affect the functionality of a product, they can be
discovered and exploited by an attacker. The impact of a vulnerability to an individual or
organization is the subject of a risk analysis, and can vary widely, depending on such
factors as the value of the resource affected or the perceived harm to one’s reputation.

For understanding the risks involved in active content, some popular active content
technologies and their associated vulnerabilities are described below. They are provided
as recent examples and do not imply an endorsement or condemnation by NIST of the
product or underlying technology. Most of them provide a useful capability when used in
a Web environment. However, they also can be exploited by an attacker. The motivation
for these technologies is to improve functionality and gain flexibility for the user. In a
Web application, this often involves moving code processing away from the Web server
onto the client’s Web browser. Allowing remote systems to run arbitrary code on some
local system, however, poses serious security risks. Traditional client-server systems do
not involve such risks since they rely on static code on both the server and client sides.

Privacy Risks: Privacy is not security; privacy is related to security, but quite a
different property. One may securely transmit personal or credit card information to
a company, but who has access to the information after receipt is generally
unknown to the individual. Although privacy breeches directly affect individuals,
they can also affect the companies for which affected individuals work. For
example, the inkling, unsubstantiated or not, that a company’s CEO is suffering from
a serious illness can cause its stock value to plummet.

Organizations link records from different sources to reduce risks and to target
marketing efforts. When taken collectively, such information constitutes an
electronic dossier on an individual, which in the wrong hands can cause harm. No
one can learn the full extent of the information that is kept on them by various
organizations, much less verify accuracy or control access. Sadly, much of the
information collected over the Internet occurs behind the scenes, without the
individual's knowledge or consent. One compelling example is the discovery over
the last year that many legitimate companies have distributed free plug-ins or other
software products containing so-called spyware – functionality that, once installed,
periodically sends reports back to the company about its use and its environment.

 ��

Besides spyware, Web sites have a myriad of tools at their disposal to collect
personal information, including tracking use by storing persistent information (i.e.,
cookies) on a system via a user’s browser, embedding invisible single-pixel images
within HTML whose downloading signals viewing (i.e., Web bugs), and invoking the
communication capabilities of embedded scripts and program components
downloaded.

Servers routinely log information that identifies users indirectly by recording client
host names and even, when available, user names, and gives information about the
request. Users may not be aware that such logs are being collected and most likely
have no idea how that information is used or how long it is retained. There are few
legal rules or ethical guidelines in most countries governing the disposition of log
information, such as the sale to other organizations where they may be combined
with other databases (e.g., online address listings) to infer further information.

3RVW6FULSW

One of the earliest examples of active content is PostScript document representation
[Ado99], still in wide use today. PostScript is a page description language that is the de
facto standard in commercial typesetting and printing houses. PostScript commands are
language statements in ASCII text that are translated into the printer's machine language
by a PostScript interpreter built into the printer. PostScript can also be interpreted by
software on most computer platforms and drawing to computer screens or an attached
drawing device. The interpreter uses scalable fonts, eliminating the need to store a variety
of font sizes.

A PostScript file contains a document description, which is specified in the PostScript
page description language. The language is a powerful interpreted language, comparable
to many programming languages. Thus, PostScript documents inherently convey active
content. For example, the language defines primitives for file manipulation, which can be
used in a PostScript document to modify arbitrary files when the document is displayed or
printed. Unfortunately, the operations can be abused by intentionally embedding
malicious file commands within an otherwise harmless image, so that in displaying the
image the interpreter also causes damage.

An early exploit of PostScript technology involved the language's ability to set a password
held by the interpreter. In some hardware implementations of the language interpreter, if
the password were set, it remained in non-volatile memory and prevented subsequent
documents from being printed unless they contained the same password. An attacker
sending a password-setting document could disable the printer in this way, requiring
hardware replacement to rectify the situation [Cle90, Spe90]. Some PostScript interpreters
can be set to disable potentially harmful primitives. For example, ghostscript, a well-
known PostScript interpreter, recognizes the command-line option "-dSAFER" that
disables file operations as well as the PostScript %pipe operator, which could be abused to
cause damage. One drawback is that applying such safeguards can also inhibit useful
functions. This dilemma is a recurring theme with active content.

 ��

3RUWDEOH'RFXPHQW)RUPDW

Portable Document Format (PDF) [Ado00a] is a page description language for specifying
the appearance of pages containing text, graphics, and images, using the same high-level,
device-independent imaging model employed by PostScript. Unlike PostScript, however,
PDF is not a full-scale programming language and does not include language features such
as procedures, variables, and control constructs.

A PDF document can be regarded as a hierarchy of objects. For example, a page object,
which includes references to the page’s contents (i.e., a content stream), other attributes,
such as its thumbnail image, and any associated annotations, represents each page of the
document. A content stream, in turn, is an object whose data consists of a sequence of
instructions that describe the graphical elements to be rendered on a page, which are also
represented as PDF objects using the same object syntax as the rest of the PDF document.
However, whereas the document as a whole is a static, random-access data structure, the
objects in the content stream are intended to be interpreted and acted upon sequentially.

Because of the object orientation and limited image-rendering operators, PDF is generally
considered a benign format. However, from time-to-time, vulnerabilities have occurred in
the implementation of PDF reader software, Acrobat, which could be exploited with
carefully constructed content [Hir99]. For example, Adobe has recently released an
update to Acrobat 4.05 that includes patches to eliminate a buffer overflow vulnerability
[Ado00b]. An attacker could exploit the vulnerability by creating a PDF file that, when
rendered by a Windows version of the reader, would cause Acrobat to crash or to execute
arbitrary code on the platform. This example illustrates how even relatively benign
content can affect document rendering software having implementation errors.

PDF does incorporate two distinct security features that can be applied to any conforming
document, individually or together: The document can be digitally sealed through a
signed document digest, a biometric signature, and other means, to certify its authenticity
and protect against tampering. The document can also be encrypted so that only
authorized users can view or operate on its contents.

-DYD

Java is a full-featured programming language compiled into platform-independent byte
code executed by an interpreter called the Java Virtual Machine (JVM). The resulting
byte code can be executed where compiled or transferred to another Java-enabled platform
(e.g., conveyed via an HTML Web page as an applet). Java is useful for adding
functionality to Web sites. Many services offered by various popular Web sites require
the user to have a Java-enabled browser. When the Web browser sees references to Java
code, it loads the code and then processes it using the built-in JVM.

The developers of Java tried to address the problem of security and were largely
successful. The Java programming language and runtime environment [Gon98, Gos96]
enforces security primarily through strong type safety, by which a program can perform
certain operations only on certain kinds of objects. Java follows a so-called sandbox
security model, used to isolate memory and method access, and maintain mutually
exclusive execution domains. Java code such as a Web applet is confined to a sandbox,
designed to prevent it from performing unauthorized operations, such as inspecting or

 ��

changing files on a client file system and using network connections to circumvent file
protections or people's expectations of privacy.

Security is enforced through a variety of mechanisms. Static type checking in the form of
byte code verification is used to check the safety of downloaded code. Some dynamic
checking is also performed during runtime. A distinct name space is maintained for
untrusted downloaded code and linking of references between modules in different name
spaces is restricted to public methods. A security manager mediates all accesses to system
resources, serving in effect as a reference monitor. Permissions are assigned primarily
based on the source of the code (where it came from) and the author of the code (who
developed it), which restricts the access of the code to computational resources. In
addition, Java inherently supports code mobility, dynamic code downloading, digitally
signed code, remote method invocation, object serialization, and platform heterogeneity.
Limitations of Java to account for memory, CPU, and network resources consumed by
individual threads [Cza95] and to support thread mobility [Fug98] have been noted.

Hostile applets still pose security threats even while executing within the sandbox. A
hostile applet can consume or exploit system resources inappropriately, or cause a user to
perform an undesired or unwanted action. Examples of hostile applets exploits include
denial-of-service, mail forging, invasion of privacy (e.g., exporting of identity, electronic
mail address, and platform information) and installing backdoors to the system. The Java
security model is rather complex and can be difficult for a user to understand and manage,
which can increase risk. Moreover, many implementation bugs have also been found,
which allow one to bypass security mechanisms [SUN01].

-DYD6FULSW DQG9%6FULSW

JavaScript is a general purpose, cross-platform scripting language whose code can be
embedded within standard Web pages to create interactive documents. The name is a
misnomer since it has little relationship to Java technology and rose independently from it.
Netscape developed JavaScript, which is similar to Microsoft’s Jscript. Both are founded
on the same standard, the ECMAScript Language Specification, ECMA-262 [ECMA99].
The scripting language is extremely powerful and able to perform anything a user can do
within the context of the browser. Design and implementation bugs have been discovered
in both commercial scripting products. JavaScript does not have methods for directly
accessing a client file system or for directly opening connections to other computers
besides the host that provided the content source.

Visual Basic Script (VBScript) is a programming language developed by Microsoft for
creating scripts that can be embedded in Web pages for viewing with the Internet Explorer
browser. Netscape Navigator, however, does not support VBScript. Like JavaScript,
VBScript is an interpreted language able to process client-side or server-side scripts.
VBScript is a subset of the widely used Microsoft Visual Basic programming language
and works with Microsoft ActiveX controls. The language is similar to JavaScript and
poses similar risks.

In theory, confining a scripting language to boundaries of a Web browser should provide a
relatively secure environment. In practice, this has not been the case. The main sources of
problems have been twofold: the prevalence of implementation flaws and the close
binding of the browser to related functionality such as an electronic mail facility or the
underlying operating system. Past exploits include sending a user's URL history list to a

 ��

remote site, and stealing the mail address of the user and forging electronic mail. The
increasing use of HTML and other markup languages as content for electronic mail and
push technology delivery has opened new avenues for exploits through embedded scripts.

$FWLYH;

ActiveX is a set of technologies from Microsoft that provide tools for linking desktop
applications to the World Wide Web. ActiveX controls are reusable component program
objects that can be attached to electronic mail or downloaded from a Web site. ActiveX
controls also come preinstalled on Windows platforms. Web pages invoke ActiveX
controls using a scripting language or with an HTML OBJECT tag. It is possible to
specify a URL where the control can be obtained, if not installed locally. Unlike Java,
which is a platform-independent programming language, ActiveX controls are distributed
as executable binaries, and must be separately compiled for each target machine and
operating system.

ActiveX Technologies: ActiveX is an ambiguous term, since it refers to a set of
technologies under a common banner. Web users normally encounter ActiveX
technology in the form of ActiveX controls, ActiveX documents, or ActiveX scripting.

• ActiveX controls, formerly known as Object Linking and Embedding (OLE)
controls, are components (or objects) of prepackaged functionality that can be
inserted into a Web page or other application for reuse. ActiveX controls are
included with Microsoft Internet Explorer to allow Web pages to be enlivened
with sophisticated formatting features, special effects, and animation.

• ActiveX documents allow an ActiveX-enabled Web browser to open an
application, with the application’s own toolbars and menus available, and serve
as its container. This allows non-HTML native-formatted files, such as
Microsoft Excel or Microsoft Word files, to be opened and manipulated
seamlessly when encountered by the browser.

• ActiveX scripting refers to enhancements to VBScript and JavaScript to interact
with ActiveX controls. ActiveX scripting can be used to integrate the behavior of
several ActiveX controls and/or Java applications from the Web browser or
server, extending their functionality.

The ActiveX security model is considerably different from the Java sandbox model
[Ste00]. The Java model restricts the permissions of applets to a set of safe actions.
ActiveX, on the other hand, places no restrictions on what a control can do. Instead,
ActiveX controls are digitally signed by their author under a technology scheme called
Authenticode. The digital signatures are verified using identity certificates issued by a
trusted certificate authority to an ActiveX software publisher. For an ActiveX publisher's
certificate to be granted, the software publisher must pledge that no harmful code will be
knowingly distributed under this scheme. The Authenticode process ensures that ActiveX
controls cannot be distributed anonymously and that tampering with the controls can be
detected. This certification process, however, does not ensure that a control will be well
behaved. The ActiveX security model assigns the responsibility for the computer system's
security to the user.

 ��

Before the browser downloads an unsigned ActiveX control, or a control whose
corresponding publisher's certificate was issued by an unknown certifying authority, the
browser presents a dialog box warning the user that this action may not be safe. The user
can choose to abort the transfer, or may continue the transfer if they assume the source is
trustworthy or they are willing to assume the risk. Users may not be aware of the security
implications of their decision, which may have serious repercussions. Even when the user
is well informed, attackers may trick the user into approving the transfer. In the past
attackers have exploited implementation flaws to cover the user dialogue window with
another that displays an unobtrusive message such as "Do you want to continue?" while
exposing the positive indication button needed to launch active content.

An ActiveX-enabled browser provides an ideal vehicle for malicious code delivery. Once
downloaded, the control is automatically executed without the victim having to take any
conscious action. Members of the Chaos Computer Club, an infamous German hacking
group, developed and demonstrated an ActiveX control that, under the pretense of
displaying a graphic image to the user, accessed an installed accounting software package
(Quicken) and transferred money from the user’s bank account to their own [CNET97,
Gil97]. Recent versions of Internet Explorer allow the user to customize the behavior of
ActiveX controls depending on whether they are downloaded from a site on the Internet, a
site on the local area network, or a site belonging to sets of identified trusted and untrusted
sites.

'HVNWRS$SSOLFDWLRQ0DFURV

Developers of popular spreadsheet, word processing, and other desktop applications
created macros to allow users to automate and customize repetitive tasks. A macro is a
series of menu selections, keystrokes, and commands recorded and assigned a name or
key combination. When the macro name is called or the macro key combination is
pressed, the steps in the macro are executed from beginning to end. Macros are used to
shorten long menu sequences as well as to create miniature programs within an
application. Macro languages often include programming controls (IF, THEN GOTO,
WHILE, etc.) that automate sequences like any programming language. A virus can be
written into a macro stored in a spreadsheet or a word processing document. When the
document is opened for viewing or use, the macro is executed and the virus is activated. It
can also attach itself to subsequent documents that are saved with the same macro. For
these reasons, under normal circumstances desktop applications should not be configured
to open automatically as a helper application for a browser.

The recent Melissa virus is an example of the risk involved [Sha99]. A Microsoft Word
document containing a malicious Visual Basic for Applications (VBA) macro propagated
itself through the Internet by sending the host document as an electronic mail attachment
addressed to contacts found in the victim’s address book. VBA is an integral part of MS
Office applications, included as a means for developers to build custom solutions within
that environment. VBA is a superset of VBScript and offers the same automation and
customization capabilities, but within the context of a desktop application.

The newer generation of electronic mail applications, including the ones built into Web
browsers, support HTML content and MIME attachments. Since active content provides
many avenues for exploits, such enclosures should be opened only after due consideration
of the inherent risks. The problem lies in the dual roles for which HTML is being used.
On the one hand, HTML is surpassing plain, non-tagged ASCII as a common means for

 ��

composing and exchanging documents. On the other hand, HTML is also being used as
an environment to house such things as scripting languages, Java applets, and ActiveX
components. By combining the flexibility to send and receive HTML content with its
ability to embody scripts and other forms of programs that have full access to memory and
files, the potential for abuse becomes self-evident.

3OXJ�LQV

Plug-ins are programs that work in conjunction with software applications to enhance their
capabilities. Plug-ins are often added to Web browsers to enable them to support new
types of content (audio, video, etc.). Such plug-ins can be downloaded from either the
browser vendor’s site or a third party site. Browsers typically prompt the user to
download a new plug-in when a document that requires functionality beyond the
browser’s current capabilities. Although plug-ins allow browsers to support new types of
content, they are not active content in and of themselves, but simply an active-content-
enabling technology. Windows Media player, RealPlayer, ThingViewer, QuickTime,
ShockWave and Flash are all examples of plug-ins that allow browsers to support new
content types ranging from audio, video, interactive animation, and other forms of “new
media.”

For instance, the ShockWave plug-in from Macromedia provides the ability to render
multimedia presentations created in a compatible format, as they are downloaded. By
design, ShockWave content supports the Lingo interpretative language as an aid to
presentation development. When creating a ShockWave presentation, the author can
include custom code using Lingo. Early versions of Lingo allowed the author to make
local system calls based on the platform executing the content, potentially allowing
malicious code to be downloaded as part of the presentation.

From a security standpoint, plug-ins contain executable code and, therefore, precautions
should be exercised in obtaining and installing them, as with any other software
application. Downloading free software code and authorizing its installation by simply
clicking an “Install now” or an equivalent button is risky. Downloading plug-ins from a
reputable manufacturer can mitigate the risk, but even in this case, it is difficult for the user
to be always aware of the security implications. In the past, unwanted side effects such as
changes to browser security settings and tracking of a user’s content preferences, however
well intentioned, have occurred. Plug-ins designed to animate cursors or hyperlinks have
also been designed to track user preferences and viewing habits across a particular Web
site more accurately. Although these additional capabilities may improve the user's
experience with a particular Web site, the privacy and security implications are often not
readily disclosed. Even if the site has a valid identity certificate associated with the signed
downloaded code, that only tells the user that the manufacturer of the code has been
verified by a certificate authority, but not whether the code obtained from them will
behave non-maliciously or correctly. Users of plug-ins should be cautioned to read the
fine print before agreeing to download executables, and take adequate measures to backup
the system in the event of problems.

&*, DQG5HODWHG ,QWHUIDFHV

CGI applications can be written in most programming languages. More often than not, a
scripting language such as Perl is used for this purpose, because of its flexibility,
compactness, and facility. If scripts are not prepared carefully, however, attackers can find

 ��

and exercise flaws in the code to penetrate a Web server. Therefore, scripts must be
written with security in mind and should not, for example, run arbitrary commands on a
system or launch insecure (or non-patched) programs. An attacker can find flaws through
trial and error and does not necessarily need the source code for the script.

Two general areas exist where CGI applications can create security vulnerabilities at the
server:

• They may intentionally or unintentionally leak information about the host system
that can aid an attacker, for example, by allowing access to information outside
the areas designated for Web use.

• When processing user-provided input, such as the contents of a form or a search
command, they may be vulnerable to attacks whereby the user tricks the
application into executing arbitrary commands supplied in the input stream.

Ideally, scripts should constrain users to a small set of well-defined functionality and
validate the size and values of input parameters so that an attacker cannot overrun memory
boundaries or piggy back arbitrary commands for execution. In the event that a script
does contain flaws, it should be run only with minimal privileges (i.e., non-administrator)
to avoid compromising the entire Web site. However, potential security holes can be
exploited even when CGI applications run with low privilege settings. For example, a
subverted script could have enough privileges to mail out the system password file,
examine the network information maps, or launch a login to a high numbered port.

The two areas of vulnerability mentioned potentially affect all Web servers. While these
vulnerabilities have frequently occurred with CGI applications, other related interfaces and
techniques for developing server applications have not been immune. CGI being an early
and well-supported standard has simply gained more notoriety over the years, and the
same areas of vulnerability exist when applying similar Web development technologies at
the server.

&RXQWHUPHDVXUHV�

A number of steps can be taken to mitigate the risks in using active content. Overall, there
are two main approaches to follow: avoidance – staying completely clear of known and
potential vulnerabilities, and harm reduction – applying measures to limit the potential loss
due to exposure. The following sections highlight some of the more useful
countermeasures one can apply.

6HFXULW\ 3ROLF\

A security policy is the set of rules, principles, and practices that determine how an
organization implements its security. Information security in any organization is largely
dependent on the quality of the security policy and the processes that an organization
imposes on itself. No amount of technology can overcome a badly implemented, poorly
planned, or nonexistent security policy. If the policy is not stated clearly and consistently,
and not made known and enforced throughout an organization, it creates a situation ripe
for exploitation.

 ��

Therefore, having or establishing an organizational security policy is an important first
step in applying countermeasures for active content. For example, an Internet security
policy can address enabling Java, JavaScript, or ActiveX on an individual user's Web
browser in various ways:

� Functionality must be disallowed completely.

� Functionality is allowed, but only from internal organizational servers.

� Functionality is allowed, but only from trusted external servers.

� Functionality is allowed from any server.

Functionality invariably takes precedence over security in product marketing and
consumer demand. Often new technology products are in use within an organization,
years before the security policy is written to guide employees. For example, over the last
year DoD has been formulating and has recently completed its policy and guidance on
mobile code technology [DoD00]. The policy delineates three categories of technology
based on increasing associated risk. Category 1, the most dangerous, includes ActiveX
and script languages interpreted at the operating system command level. Category 2
includes Java mobile code, PostScript, and various scripting languages running within the
confines of a desktop application. Category 3 includes Shockwave Flash content, PDF,
and VBScript and ECMAscript-variant scripting languages interpreted within the confines
of a browser. Where possible, the policy distinguishes between signed and unsigned code,
favoring the former over the latter.

While the policy comes many years after the respective technology’s debut in products,
the DoD is to be commended for tackling the problem early, relative to most other
organizations. Yet, on the horizon are technologies, allowing entire processes (i.e., code,
accumulated data, and execution state) to move among host computers, which go beyond
mobile code and the limits of classical computer security.

5LVN$QDO\VLV DQG0DQDJHPHQW

Security involves continually analyzing and managing risks. Any such analysis must
identify vulnerabilities and threats, anticipate potential attacks, assess their likelihood of
success, and estimate the potential damage from successful attacks. Risk management is
the process of assessing risk, taking steps to reduce risk to an acceptable level, and
maintaining that level of risk. One of the most significant security pieces missing from
most organizations is an on-going practice of risk analysis and management.

Because security is relative to each organization, it must be tailored to an organization’s
specific needs, budget, and culture. For example, an attack launched against one
organization could succeed easily and compromise extremely important information,
while on another organization would only result in minimal damage, perhaps because of
an absence of sensitive data. Companies, much like people, have personalities with
differing comfort levels on the amount of risk that is reasonable, which also influence this
process. Once an assessment is made, countermeasures can be put in place against those
attacks deemed significantly high by either reducing the likelihood of occurrence or
minimizing the consequences of the attack. Different countermeasures are employed to
meet an organization’s specific needs.

 ��

Recently, the General Accounting Office (GAO) analyzed and summarized information
security weaknesses identified in audit reports of federal agencies [GAO00], issued from
July 1999 through August 2000. They noted that most of the organizations reviewed had
not adopted systematic, thorough practices for evaluating system vulnerabilities and for
reducing risk.

“Despite the importance of this aspect of an information security program, poor
security planning and management continues to be a widespread problem. As noted
earlier, of the 21 agencies for which this aspect of security was reviewed, all had
deficiencies. Many of these agencies had not developed security plans for major
systems based on risk, had not documented security policies, and had not
implemented a program for testing and evaluating the effectiveness of the controls
they relied on. As a result, agencies (1) were not fully aware of the information
security risks to their operations, (2) had accepted an unknown level of risk by default
rather than consciously deciding what level of risk was tolerable, (3) had a false sense
of security because they were relying on controls that were not effective, and (4) could
not make informed judgments as to whether they were spending too little or too much
of their resources on security.”

To help remedy the problem, GAO has developed a guide on implementing an
information security risk assessment process [GAO99]. It contains examples, or case
studies, of practical risk assessment procedures, which have been adopted by several
organizations that have successfully implemented good risk assessment practices. The
guide also identifies factors that are important to the success of any risk assessment
program, regardless of the specific methodology employed.

6HFXULW\$XGLW

An increasing popular approach for measuring the security posture of an organization is
through a formal security audit. Audits ensure that policies and controls already
implemented are operating correctly and effectively. Audits can include static analysis of
policies, procedures, and countermeasures as well as active probing of the systems
external and internal security mechanisms. The results of an audit identify the strengths
and weaknesses of the security of the system and potentially provide a list of deficits for
resolution rated by degree of severity. As the security posture of a system evolves over
time, audits are most effective when done on a reoccurring basis.

While periodic formal audits are useful, they are not a replacement for day-to-day
management of the security status of a system. Enabling system logs and reviewing their
contents manually or through automated reports summaries is often the best means of
uncovering unauthorized behavior and detecting security problems.

(YDOXDWHG ,QIRUPDWLRQ7HFKQRORJ\

Whenever possible, preference should be given to a product that has undergone a formal
security evaluation versus one that has not. The focus of a security evaluation is primarily
on the correctness and effectiveness of the design, under the well-founded principle that a
sound design enables a secure implementation, but an unsound design is hopelessly
doomed. Products that have undergone other less formal forms of third-party testing and
evaluation are also preferable to those lacking such scrutiny. However, an evaluated
product lacking a needed security capability might be less preferable to an unevaluated

 ��

product or a product evaluated at a lower level of assurance that claims such support. A
more detailed recommendation for Federal Organizations on the acquisition and use of
evaluated and tested products is available elsewhere [Rob00].

Note that using tested and evaluated software does not necessarily ensure a secure
operational environment. The way in which a product is applied and composed with other
system components affects security. Even when a product does successfully complete a
formal security evaluation, it may contain vulnerabilities. For example, one of the most
common attacks, if not the most common, is through a buffer overflow, whereby the input
to a defined programming interface is carefully crafted to overwrite memory beyond the
input buffer limit with instructions designed to gain control of the process. Most people
would probably expect a security evaluation to include a systematic search and elimination
of buffer overflows. Unfortunately, it does not. While evaluators test the implementation
for known security vulnerabilities, and at more stringent levels even attempt penetrations,
a systematic search of buffer overflow vulnerabilities is out of scope due mainly to cost.

'LJLWDO 6LJQDWXUH

A digital signature is an unforgeable code computed over a document or other information
that uniquely identifies the signer who computed it. When applied properly, a digital
signature serves as a means of confirming the authenticity of an object, its origin, and its
integrity. Because of these characteristics, digital signatures are involved in most
authentication schemes. For example, the Secure Sockets Layer (SSL) protocol, built into
most browsers and Web servers, relies on digital signatures for authenticating the parties
involved in a transaction. When applied to mobile code, the code signer is typically the
creator of the code.

Digital signatures involve public key cryptography, which relies on a pair of keys
associated with an entity. One key is kept private by the signing entity and the other is
made publicly available. Passing mobile code through a non-reversible hash function
provides a fingerprint or unique message digest of the code, and then encrypting the result
with the private key of the signer forms a digital signature. Because the message digest is
unique, and thus bound to the code, the resulting signature also serves as an integrity
mechanism. Digital signatures benefit greatly from the availability of a Public Key
Infrastructure, since certificates containing the identity of an entity and its public key (i.e.,
a public key certificate) can be readily located and verified. This allows the code,
signature, and public key certificate to be forwarded to a recipient, who can easily verify
the source and authenticity of the code.

Whenever possible, digital signatures should be used in Web-based applications, not only
to verify the identities of the parties involved, but also to confirm the integrity of any
mobile code and the acceptability of the code’s author. Note that the meaning of a
signature may be different depending on the policy associated with the signature scheme
and the party who signs. For example, the author of some code, either an individual or
organization, may use a digital signature to indicate who produced the code, but not to
guarantee that the agent performs without fault or error. In fact, author-oriented signature
schemes, such as Microsoft's Authenticode, were originally intended to serve as digital
shrink wrap, whereby the original product warranty limitations stated in the license remain
in effect (e.g., manufacturer makes no warranties as to the fitness of the product for any
particular purpose). For many users, however, the signature has gone beyond establishing

 ��

authenticity and become a form of trust in the software, which could ultimately have
disastrous consequences.

$SSOLFDWLRQ6HWWLQJV

The desktop applications that handle documents containing active content typically have
built-in controls that can be used to control or prevent access. For example, both Netscape
and Microsoft Web browsers have options or preferences menus that can be used to select
appropriate security settings regarding active content within downloadable documents.
The National Security Telecommunications and Information Systems Security Committee
(NSTISSC) has recently issued an advisory memorandum on Web browser security
[NAM00] that outlines steps to lower associated risks through tightly controlled
configurations. Electronic mail, spreadsheet, word processor, database, and presentation
graphic desktop software applications have control settings similar to those of a browser
and demand scrutiny in light of past exploits. For example, the ability of many electronic
mail applications to render HTML formatted content can be controlled to disallow or
disable any executable content. Tight functional binding among desktop applications is a
concern, particularly where automatic rendering of multi-part or composite documents is
enabled. Even today, many manufacturers deliver products with insecure default settings.
It behooves the user of such applications to become familiar with the security options
available and use them in accordance with organizational policy.

$XWRPDWHG)LOWHUV

If malicious content has been identified and understood, it can be detected and eliminated
or completely rejected from entering. For example, many firewalls can filter electronic
mail attachments for well-known file types, such as “.exe” executable files, and deleting
them at the point of entry. More sophisticated filters can perform checks for viruses
within executables and hidden macros within document files. Anti-virus software has also
become increasingly capable of detecting electronic documents having active content with
a malicious code signature. Such software can be applied at the Web browser or at a
proxy running at a cache manager.

Besides ingress filtering, egress filtering is also useful in denying unacceptable actions
originating from internal hosts. Strange or unexpected, but not necessarily unacceptable,
emissions from internal hosts may signal that they have been compromised in some way.
Intrusion detection systems provide an additional safeguard for screening network and
host behavior and provide notification when either inappropriate or unusual event
sequences occur, or signatures of known exploits are matched.

While firewalls, anti-virus software, and intrusion detection tools provide useful
countermeasures, they are not foolproof. It is impossible to construct a program to detect
with certainty the presence or absence of harmful code within arbitrary programs or
protocol. Thus, screening tools are faced with the prospect of diminishing returns –
greater investments are needed for small increases in effectiveness. Despite services to
refresh protection software with signatures of known exploits, and cascaded defense-in-
depth measures, aside from total isolation, there is no guarantee that something harmful
cannot get through.

 ��

9HUVLRQ&RQWURO

Users can gain better security by applying security patches when they become available.
This is a well-known and effective remedy, but for a variety of reasons also a well-ignored
one. Users can also take advantage of security enhancements to their applications by
upgrading to newer versions. For example, Microsoft Windows 98 users can use the
Windows update feature to find bug fixes and product updates and download them
automatically from the Web. Using this feature, however, requires the user to employ
code that will scan the computer for information needed to install properly any upgrades.
Microsoft’s Web site states that none of this information is sent to Microsoft or over the
Internet. Updating software products automatically over the Web is becoming
increasingly popular, as the benefits to the user are considerable. As this practice becomes
more commonplace, users must be aware of their implicit decision to allow a vendor to
run software on their machine and act accordingly, following prescribed policy.

5HDGHUV

Occasionally, manufacturers of desktop applications provide free software readers, which
can interpret their proprietary file formats for document recipients who do not own the
application. The Adobe Acrobat Reader, for example, allows users to view and print PDF
files, but does not allow users to create or edit them. Since the software readers are only
intended to produce a viewable rendition of the document and are not full fledge
applications, they bypass many potentially harmful features and exploits based on
implementation vulnerabilities contained in a specific application. Besides manufacturer-
provided readers, general-purpose software readers are commercially available, which can
render dozens of different file formats.

A related measure is the selection of documents with less capable types of active content,
when multiple choices are offered. Some Web sites offer an electronic document in a
variety of formats such as native word processor format, PostScript, or PDF. While PDF
represents text and graphics using the PostScript language-imaging model, PDF is not a
programming language and does not support macros, making it the safest alternative.
Whenever possible, content providers and site operators should strive to provide less
harmful document formats. For example, when document distillers are not available to
convert textual documents into PDF, a good alternative is to make available a version in
“.rtf”, rich text format, rather than a native word processing format, such as Word “.doc”
files.

,VRODWLRQ

Isolation can be applied at various levels. The simplest is complete isolation at the system
level. A production computer system that is unable to receive documents containing
active content cannot be affected by malicious hidden code. Although isolating a system
physically is not always possible, logical isolation (e.g., via router settings or firewall
controls) may be applied, at least partially. For example, risky functions, such as Web
browsing, may be confined to a second system designated exclusively for that purpose.
Often older or spare systems are available and could be put to good use this way.

Isolation of tightly bounded proprietary program components is another alternative.
Seamless interoperation of products such as electronic mail, Web browsers, and office

 ��

applications is a goal of product manufacturers. To provide better functionality or
performance, manufacturers often allow products within their product line to take
advantage of little known or undocumented interfaces, which has from time-to-time lead
to unwanted or insecure side effects. By integrating products from different
manufacturers, one can effectively isolate program components from using all but the
documented and standard interfaces.

/HDVW 3ULYLOHJH

The principle of least privilege states that programs should operate only with the privileges
needed to accomplish their functions. During application development, it is easier to run
code at the highest level, with the intention of paring back privileges in the production
deployment. Unfortunately, the privilege reduction step is easy to overlook and often is.
For example, Unix developers may enhance the server using Set-User-ID (SUID)
programs, which refer to code that run with privileges of the owner (e.g., root) regardless
of who is executing them. SUID programs, particular those owned by root, can be
dangerous because if subverted, they allow an intruder to gain control with the owner’s
privilege. Running the code instead with the minimum privileges needed, restricts the
range of access to the intruder, if an attack is successful. Similarly, on the browser side,
any mobile code received should be constrained to the minimal privileges needed. The
recent versions of the Java Virtual Machine environment, for example, offer the user the
ability to set fine-grained permission controls for incoming applets.

0LQLPDO)XQFWLRQDOLW\

Security is inversely related to complexity – the more complex a system, the more difficult
it is to secure. Prudent users and administrators should remove unnecessary applications
and program components to reduce complexity and shut off possible avenues of attack.
Even though a system configuration may have a function logically disabled, a clever
attacker may be able to alter the settings to enable the functionality and then use it in an
exploit. On the browser side, unnecessary plug-ins or ActiveX controls should be
removed. On the server side, any unnecessary software not needed in providing Web
services must go as well, particularly any development tools that could be used to further
an attack, should an intruder gain an initial foothold.

&RPSXWHU ,QFLGHQW5HVSRQVH+DQGOLQJ

No matter how well an organization’s security program is executed, inevitably, a breach in
security does occur. Besides adopting reasonable precautions for securing systems and
networks, one must also establish the ability to respond quickly and efficiently when such
a security incident occurs. A security incident is an adverse event or situation involving a
networked information system that poses a threat to the integrity, confidentiality, or
availability of the information system. Examples of incidents include unauthorized use of
an account, unauthorized elevation of system privileges, and execution of malicious code
that corrupts data or other code. Incidents may result in a partial or complete loss of
security controls, an attempted or actual compromise of data, or the waste, fraud, abuse,
loss or damage of computational resources. Responding to computer security incidents
effectively requires a significant amount of preparation. Incidence response activities
require technical knowledge as well as effective communication and coordination among

 ��

personnel who respond to the incident, in order to return the system as quickly as possible
to normal operations.

6XPPDU\�

Active content documents offer benefits to both the users and authors of such documents.
The associated technologies are varied, yet sometimes similar and overlapping in function.
Java applets, JavaScript, VBScript and ActiveX provide additional functionality to Web
pages, while plug-ins, helper applications, and ActiveX controls enable browsers to
support new types of content. PostScript offloads the processing and interpretation of the
presentation of documents to the printer or display interpreter, and macros automate
repetitive word processing and spreadsheet tasks. HTML, JavaScript, and Java are
relatively platform independent and can run on current versions of both Internet Explorer
(IE) and Netscape Navigator. VBScript and JavaScript can also be used to pass
information between HTML, Java, and ActiveX components.

The benefits of each of these active content technologies must be carefully weighed
against the risks they pose. Security is not black or white, but shades of gray. When
employing active content technology, security measures should be put in place to reduce
risk to an acceptable level and to recover if an incident occurs.

Informed security officers, administrators, and other IT professionals are responsible for
developing security policies based on their organization’s specific security needs and level
of acceptable risk. Unfortunately, rarely is there a “one size fits all” guideline that fits the
unique needs of every organization and each organization must decide what constitutes an
acceptable level of risk. Establishing an organizational security policy is an important step
in developing and applying appropriate security measures. The IT and security staff have
a responsibility for keeping abreast of the risks associated with emerging technologies, by
subscribing to security mailing lists and visiting vendor Web sites for information and
updates to products used within their organization. As active content moves beyond
desktop personal computers to mobile handsets, television sets, and a variety of other
consumer electronic goods, users will be faced with competing and difficult tradeoffs
between privacy and security, with increased functionality and ease-of-use.

Before handling documents containing active content, consider seriously the following
checklist, which summarizes some recommendations drawn from the previous material:

� Identify critical information resources and maintain regular backups.

� Identify and assess the risk to critical information resources from active content.

� Develop (or follow) the enterprise security policy regarding active content.

� Audit systems on a regular basis to ensure the security policy is implemented correctly
and remains effective.

� Evaluate and install virus scanners, firewalls, and active content filters according to
enterprise security requirements. Keep these products upgraded to the latest version.

 ��

� Become knowledgeable of the security settings of desktop applications and turn off
unneeded functionality.

� Keep informed of latest security advisories from CERT, and subscribe to security
mailing lists.

� Periodically crosscheck products against published lists of know vulnerabilities, such
as NIST’s automated Internet Categorization of Attacks Toolkit (ICAT), which
provide pointers to solution resources and patch information.

� Obtain and install latest software upgrades and patches that address security
vulnerabilities in desktop applications, such as Web browsers, readers, and electronic
mail, and other critical software.

� Obtain all software through approved distribution channels.

� Institutionalize the download, evaluation, and distribution of needed plug-ins and
freeware from the Internet to the organization.

� Read the fine print before agreeing to download application software and plug-ins.

� Do not run active content or software from untrusted sources. Enable ActiveX code
only from trusted Web sites that require its use.

� Consider using an isolated system and safe browser settings when visiting untrusted
Web sites.

� Do not open documents containing active content or execute any electronic mail
attachments, without first verifying them with the sender. Be especially wary of
attachments to electronic chain mails forwarded from or through friends.

One typical and common sense approach is to improve the security infrastructure
incrementally over time. At each step, apply safeguards against the most critical risk
items. For example, start inexpensively with packet filtering firewalls and authenticating
routers, which defend successfully against a very high percentage of attacks launched from
the Internet. Later, add encryption and key management or other technologies for
additional protection. Regular site security audits also help to identify vulnerabilities and
appropriate countermeasures, and to decide whether the remaining risks warrant further
expenditures of time and money.

7HUPLQRORJ\�

The following definitions highlight important concepts used throughout this document:

$FWLYH &RQWHQW

Active content refers to electronic documents that are able to carry out or trigger actions
automatically on a computer platform without the intervention of a user.

 ��

,QWHUSUHWHU

An interpreter is a program that processes a script or other program expression and carries
out the requested action, in accordance with the language definition.

:HE %URZVHU

A browser refers to any collection of software that lets individuals view Web content, and
includes the user interface, helper applications, language and byte code interpreters, and
other similar program components.

&RRNLH

A piece of state information supplied by a Web server to a browser, in a response for a
requested resource, for the browser to store temporarily and return to the server on any
subsequent visits or requests.

:HE %XJ

Web bugs are tiny images, invisible to a user, placed on Web pages in such a way to
enable third parties to track use of Web servers and collect information about the user,
including IP address, host name, browser type and version, operating system name and
version, and cookies.

6S\ZDUH

Spyware is a program embedded within an application that collects information and
periodically communicates back to its home site, unbeknownst to the user. Spyware
programs have been discovered within shareware or freeware programs, without
notification of this hidden functionality given in the license agreement or elsewhere.

0DOLFLRXV &RGH

Malicious code refers to programs that are written intentionally to carry out annoying or
harmful actions. They often masquerade as useful programs or are embedded into useful
programs, so that users are induced into activating them. Types of malicious code include
Trojan horses, computer viruses, and worms.

6FULSW

A script is a sequence of commands, often residing in an ASCII file, which can be
executed automatically by an interpreter.

6FULSWLQJ /DQJXDJH

A scripting language defines the syntax and semantics for writing scripts. Typically,
scripting languages follow the conventions of a simple programming language, but they
can also take on a more basic form such as a macro or a batch file. JavaScript, VBScript,
and Perl are examples of scripting languages.

 ��

7URMDQ +RUVH

A Trojan horse is a useful or seemingly useful program that contains hidden code of a
malicious nature. When the program is invoked, so is the undesired function whose
effects may not become immediately obvious. The name stems from an ancient exploit of
invaders' gaining entry to the city of Troy by concealing themselves in the body of a
hollow wooden horse, presumed to be left behind by the invaders as a gift to the city.

&RPSXWHU 9LUXV

A computer virus is similar to a Trojan horse insofar as it is a program that hides within a
program or data file and performs some unwanted function as a side effect. The main
difference is that a virus can replicate by attaching a copy of itself to other programs or
files, and may trigger an additional "payload" when specific conditions are met.

0DFUR 9LUXV

A type of computer virus that is encoded as a macro embedded in a document and
executes when the document is opened. Many desktop applications, such as word
processors and spreadsheets, support powerful macro languages that can be exploited this
way.

:RUP

A worm is a self-replicating program that propagates itself onto other computer systems.
Unlike a virus, it is self-contained and does not require a host program or any user
intervention to replicate. Although nowadays worms are associated with malicious code,
the concept was originally introduced as a means of building useful applications [Sho82].

2QOLQH�5HVRXUFHV�

A wealth of security information, which supplements this publication, is available on-line.
Note that, in addition to this section, many of the publications in the reference section
contain URLs for perusal by the reader. The following list of Web sites contains a number
of notable sites where one can begin to explore additional information on computer
security.

1DWLRQDO ,QIRUPDWLRQ $VVXUDQFH 3DUWQHUVKLS �1,$3��

NIAP is a U.S. Government initiative to promote the development of technically sound
security requirements for IT products and systems and appropriate metrics for evaluating
those products and systems to meet the needs of both information technology (IT)
producers and consumers. http://www.niap.nist.gov/

 ��

&HQWHU IRU (GXFDWLRQ DQG 5HVHDUFK LQ ,QIRUPDWLRQ $VVXUDQFH DQG 6HFXULW\

�&(5,$6��

CERIAS is a university center for multidisciplinary research and education in areas of
information security (computer security, network security, and communications security),
and information assurance. http://www.cerias.purdue.edu/

0LFURVRIW ,QWHUQHW ([SORUHU 6HFXULW\ 3DJH

Microsoft posts information and code fixes for security problems in their products as soon
as the information is available. http://www.microsoft.com/windows/ie/security/default.asp

1HWVFDSH 6HFXULW\ 3DJH

Netscape posts the latest news concerning the security of their browser, Web server, and
development software. http://home.netscape.com/security/notes/

1,67 &RPSXWHU 6HFXULW\ 5HVRXUFH &OHDULQJKRXVH �&65&�

The CRSC contains current US security policy documents, calendar of events, security
publications, training resources, and information on various computer security subjects.
http://csrc.nist.gov

1,67 ,QWHUQHW &DWHJRUL]DWLRQ RI $WWDFNV 7RRONLW �,&$7�

ICAT is a searchable index of information on computer vulnerabilities. It provides a
manufacturer and product oriented search capability at a fine granularity, and links users to
vulnerability and patch information. http://icat.nist.gov

)HGHUDO &RPSXWHU ,QFLGHQW 5HVSRQVH &DSDELOLW\ �)HG&,5&��

FedCIRC provides a government focal point for incident reporting, handling, prevention,
and recognition. http://www.fedcirc.gov/

:::6HFXULW\)$4

The World Wide Web Consortium site contains a repository of information about the Web
for developers and users. http://www.w3.org/Security/Faq/

6\VWHP $GPLQLVWUDWLRQ� 1HWZRUNLQJ� DQG 6HFXULW\ �6$16� ,QVWLWXWH

The SANS community offers various types of products and services, including: system
and security alerts, news updates, special research projects and publications, in-depth
education, and certification. http://www.sans.org

&RPSXWHU (PHUJHQF\ 5HVSRQVH 7HDP �&(57� &RRUGLQDWLRQ &HQWHU

CERT issues security advisories, helps start other incident response teams, coordinates the
efforts of teams when responding to large-scale incidents, provides training to incident

 ��

response professionals, and researches the causes of security vulnerabilities.
http://www.cert.org/

5,6.6 IRUXP

ACM Committee on Computers and Public Policy forum advises on risks to the public in
computers and related systems. http://catless.ncl.ac.uk/Risks/

5HIHUHQFHV�

[Ado00a] Adobe Portable Document Format, Version 1.3, second edition, Adobe
Systems Incorporated, July 2000,
http://partners.adobe.com/asn/developer/acrosdk/DOCS/PDFRef.pdf

[Ado00b] “Security Update,” Adobe Systems Incorporated, 2000,

http://www.adobe.com/misc/pdfsecurity.html

[Ado99] PostScript Language Reference, third edition, Adobe Systems Incorporated,

February 1999,
http://partners.adobe.com/asn/developer/PDFS/TN/PLRM.pdf

[Anu98] V. Anupam, A. Mayer, “Secure Web Scripting,” IEEE Internet Computing,

vol. 2, no. 6, November/December 1998, pp. 46-55

[Cle90] Robert E. Van Cleef, “New Roque Imperils Printers,” The Risks Digest,

Volume 10, Issue 32, September 1990,
http://catless.ncl.ac.uk/Risks/10.32.html

[Coh95] Fred Cohen, “Internet Holes: 50 Ways to Attack Your Web Systems,”

Management Analytics, 1995, http://all.net/journal/netsec/9512.html

[CNET97] “ActiveX Used as Hacking Tool,” CNET News.com, February 7, 1997,

http://news.cnet.com/news/0-1005-200-316425.html?tag=st.ne.ni.rnbot.rn.ni

[CSS1] Cascading Style Sheets – level 1 (CSS1), W3C Recommendation, January

1999, http://www.w3.org/TR/1999/REC-CSS1-19990111

[CSS2] Cascading Style Sheets – level 2, (CSS2), W3C Recommendation, May1998,

http://www.w3.org/TR/1998/REC-CSS2-19980512

[Cus99] Michael A. Cusumano, David B. Yoffie, “Software Development on Internet

Time,” IEEE Computer, October 1999, pp.60-69

[Cza95] G. Czajkowski, T. von Eicken, “JRes: A Resource Accounting Interface for

Java,” ACM Conference on Object Oriented Languages and Systems
(OOPSLA), Vancouver, Canada, October 1998

[DoD00] “Policy Guidance for Use of Mobile Code Technologies in Department of

Defense (DoD) Information Systems,” Assistant Secretary of Defense

 ��

Memorandum, November 7, 2000,
http://www.c3i.osd.mil/org/cio/doc/mobile-code11-7-00.html

[ECMA99] ECMAScript Language Specification, 3rd edition, Standard ECMA-262,

December 1999, ftp://ftp.ecma.ch/ecma-st/Ecma-262.pdf

[Fel97] Edward W. Felten et ali, “Web Spoofing: An Internet Con Game,” National

Information Systems Security Conference, October, 1997,
http://www.cs.princeton.edu/sip/pub/spoofing.html

[FTP] Postel, J., Reynolds, J., File Transfer Protocol (FTP), IETF Network Working

Group, STD 9, RFC 959, October 1985,
http://www.ietf.org/rfc/rfc0959.txt?number=959

[Fug98] A. Fuggetta, G. P. Picco, and G. Vigna, “Understanding Code Mobility,”

IEEE Transactions on Software Engineering, 24(5), May 1998, pp. 342-361,
http://www.cs.ucsb.edu/~vigna/listpub.html

[GAO00] “Information Security: Serious and Widespread Weaknesses Persist at

Federal Agencies,” United States General Accounting Office (GAO),
GAO/AIMD-00-295, September 2000,
http://www.gao.gov/new.items/ai00295.pdf

[GAO99] “Information Security Risk Assessment: Practices of Leading Organizations,”

United States General Accounting Office (GAO), GAO/AIMD-00-33,
November 1999, http://www.gao.gov/special.pubs/ai00033.pdf

[Gil97] John Gilles, “Crackers Shuffle Cash with Quicken, ActiveX,” Wired News,

February 7, 1997,
http://www.wirednews.com/news/technology/0,1282,1943,00.html

[Gon98] L. Gong, “Java Security Architecture (JDK 1.2),” Draft Document, revision

0.8, Sun Microsystems, March 1998,
http://service.felk.cvut.cz/doc/java/share/jdk1.2beta3/docs/guide/security/spe
c/security-spec.doc.html

[Gos96] J. Gosling, H. McGilton, “The Java Language Environment: A White Paper,”

Sun Microsystems, May 1996, http://SunSITE.sut.ac.jp/java/whitepaper/

[Hir99] Shane Hird, “Adobe Acrobat Viewer ActiveX Buffer Overflow

Vulnerability,” September 1999, http://www.securityfocus.com/bid/666

[HTML4] HTML 4.01 Specification, W3C Recommendation, December 1999,

http://www.w3.org/TR/html4/html40.txt

[HTTP] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, and T. Berners-Lee,

Hypertext Transfer Protocol – HTTP/1.1, IETF Network Working Group,
RFC 2616, June 1999, http://www.ietf.org/rfc/rfc2616.txt?number=2616

[Hug99] Paul Hughes, “Building a Web Browser,” THT Productions Inc., December

1999, http://www.vbWeb.co.uk/controls/Web_browser.htm

 ��

[MIME] N.Borenstein and N. Freed, MIME (Multipurpose Internet Mail Extensions)
Part One: Mechanisms for Specifying and Describing the Format of Internet
Message Bodies, IETF Network Working Group, RFC 1521, September
1993, http://www.ietf.org/rfc/rfc1521.txt?number=1521

[Mor98] John F. Morar, David M. Chess, “Web Browsers – Threat or Menace?”

Virus Bulletin Conference, October 1998,
http://www.research.ibm.com/antivirus/SciPapers/Chess/Threat/Threat.html

[NAM00] “Advisory Memorandum on Web Browser Security Vulnerabilities,”

NSTISSAM INFOSEC 3-00, August 2000,
http://csrc.nist.gov/publications/secpubs/index.html#other

[Rob00] Ed Roback, “Guidelines to Federal Organizations on Security Assurance and

Acquisition/Use of Tested/Evaluated Products,” NIST SP 800-23, August
2000, http://csrc.nist.gov/publications/nistpubs/800-23/sp800-23.pdf

[Sha99] Stephen Shankland, “Melissa's Mischief Hits All Sides,” CNET News.com,

March 31, 1999, http://news.cnet.com/news/0-1005-200-
340611.html?tag=st.ne.ni.rnbot.rn.ni

[Sho82] Shoch, John F., and Jon A. Hupp, “The Worm Programs – Early Experience

with a Distributed Computation,” Communications of the ACM Volume 25,
Number 3, March 1982, pp. 172-180

[Spe90] Henry Spencer, “Re: New Roque Imperils Printers,” The Risks Digest,

Volume 10, Issue 35, September 1990,
http://catless.ncl.ac.uk/Risks/10.35.html

[Ste00] Lincoln D. Stein, “The World Wide Web Security FAQ,” Version 2.0.1,

March 2000, http://www.w3.org/Security/Faq/www-security-faq.html

[SUN01] Chronology of Security-related Bugs and Issues, Java Security, Sun

Microsystems, February 2001, http://java.sun.com/sfaq/chronology.html

[Ven99] Venners, Bill, “A Walk through Cyberspace,” JavaWorld, December 1999,

http://www.javaworld.com/javaworld/jw-12-1999/jw-12-jiniology.html

[Wer99] Werring, Laurentius, “ The Hidden Threat Within,” 11th Annual Canadian

Information Technology Security Symposium, May 1999, pp. 201-214

[XML1] Extensible Markup Language (XML) 1.0, Second Edition, W3C

Recommendation, October 2000, http://www.w3.org/TR/2000/REC-xml-
20001006

 ��

$QQH[�$�²�+773�5HTXHVW�0HWKRGV�

• Table 1: Summary of Available Browser Request Methods

Method Class Meaning

OPTIONS Probe Get information about the
communication options available

GET Retrieval Retrieve the resource identified by
URL

HEAD Probe Retrieve meta-information (not
content) about the identified resource

POST Storage Send data to the server
PUT Create/Replacement Send data to the server

DELETE Removal Delete the identified resource
TRACE Diagnostic Loop back this message

CONNECT Server Error Reserved for SSL tunneling via a proxy

$QQH[�%�²�+773�5HVSRQVH�6WDWXV�

• Table 2: Categories of Server Response Code

Status Code Class Meaning

1xx Informational Request was received; continuing
process

2xx Success The action was successfully received,
understood, and accepted

3xx Redirection Further action must be taken in order
to complete the request

4xx Client Error The request contains bad syntax or
cannot be fulfilled

5xx Server Error The server failed to fulfill an
apparently valid request

